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Motivation

Useful to run statistical analysis

to examine the relationship

between variables

e.g. coefficients of a logistic

regression
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Expert human annotations tend to be high
quality but costly to produce at scale
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In many domains data is often
only available as free-form text

e.g. Computational Social
Science

Setup
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Debiasing methods:
Expe_rt Use both a small subset of expert
Annotations annotations to bias-correct
> model from generated
* annotations while still taking
= advantage of the scalability of
(— 8 generative methods
Generated
Annotations
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Annotations generated by LLMs are cheaper but
risks introducing unwanted and poorly understood
biases into the downstream analysis.\
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For all experiments:

e Logistic regression

o 4 discrete input features

o Binaryoutput
e 4 different LLMs
e 4 different datasets

e Evaluation: standardised RMSE with a reference

model

Scan to read the full paper!
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Results

RQ1: When is it preferable to use debiasing
methods over just the expert annotations?

Both DSL and PPI strictly outperform using

only expert annotations.
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Prediction-Powered Inference
(PPI)*

Correct imputation estimate with rectifier:
é = g — g
Compute rectifier from gradients:

Ty = ]E[vgfg(:ﬂi, yi) — Vﬁgﬂ(i’i: i:'ﬂ)]

*Angelopoulos, Anastasios N., et al. "Prediction-powered inference." Science 382.6671(2023): 669-674.

Design-based Supervised
Learning (DSL)T

Assume known expert labelling distribution:
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Double-robust estimate:
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TEgami, Naoki, et al. "Using large language model annotations for the social sciences: A general framework

of using predicted variables in downstream analyses." Preprint from November 17 (2024): 2024.

RQ2: What are the performance differences
between debiasing methods?

DSL tends to outperform PPI, but
performance is more variable.

Experiment 1

Vary the proportion of samples also annotated by human experts:

Performance per dataset:

Multi-domain Sentiment Misinfo-general
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Given a fixed number of samples, how many of them should | annotate by
hand to observe significant benefits from the debiasing methods?

Experiment 2

Vary the number of samples with generated annotations:
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Given a fixed number of expert-annotated samples, how many additional samples should | annotate

with LLMs? Are there diminishing returns?
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